Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.823
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(4): 1, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558095

RESUMO

Purpose: The purpose of this study is to report five novel FZD4 mutations identified in familial exudative vitreoretinopathy (FEVR) and to analyze and summarize the pathogenic mechanisms of 34 of 96 reported missense mutations in FZD4. Methods: Five probands diagnosed with FEVR and their family members were enrolled in the study. Ocular examinations and targeted gene panel sequencing were conducted on all participants. Plasmids, each carrying 29 previously reported FZD4 missense mutations and five novel mutations, were constructed based on the selection of mutations from each domain of FZD4. These plasmids were used to investigate the effects of mutations on protein expression levels, Norrin/ß-catenin activation capacity, membrane localization, norrin binding ability, and DVL2 recruitment ability in HEK293T, HEK293STF, and HeLa cells. Results: All five novel mutations (S91F, V103E, C145S, E160K, C377F) responsible for FEVR were found to compromise Norrin/ß-catenin activation of FZD4 protein. After reviewing a total of 34 reported missense mutations, we categorized all mutations based on their functional changes: signal peptide mutations, cysteine mutations affecting disulfide bonds, extracellular domain mutations influencing norrin binding, transmembrane domain (TM) 1 and TM7 mutations impacting membrane localization, and intracellular domain mutations affecting DVL2 recruitment. Conclusions: We expanded the spectrum of FZD4 mutations relevant to FEVR and experimentally demonstrated that missense mutations in FZD4 can be classified into five categories based on different functional changes.


Assuntos
Doenças Retinianas , beta Catenina , Humanos , Vitreorretinopatias Exsudativas Familiares , beta Catenina/metabolismo , Doenças Retinianas/patologia , Células HEK293 , Células HeLa , Receptores Frizzled/genética , Mutação , Linhagem , Análise Mutacional de DNA , Tetraspaninas/genética
2.
Invest Ophthalmol Vis Sci ; 65(3): 31, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38517429

RESUMO

Purpose: This study aimed to investigate the impact of 21 NDP mutations located at the dimer interface, focusing on their potential effects on protein assembly, secretion efficiency, and activation of the Norrin/ß-catenin signaling pathway. Methods: The expression level, secretion efficiency, and protein assembly of mutations were analyzed using Western blot. The Norrin/ß-catenin signaling pathway activation ability after overexpression of mutants or supernatant incubation of mutant proteins was tested in HEK293STF cells. The mutant norrin and wild-type (WT) FZD4 were overexpressed in HeLa cells to observe their co-localization. Immunofluorescence staining was conducted in HeLa cells to analyze the subcellular localization of Norrin and the Retention Using Selective Hook (RUSH) assay was used to dynamically observe the secretion process of WT and mutant Norrin. Results: Four mutants (A63S, E66K, H68P, and L103Q) exhibited no significant differences from WT in all evaluations. The other 17 mutants presented abnormalities, including inadequate protein assembly, reduced secretion, inability to bind to FZD4 on the cell membrane, and decreased capacity to activate Norrin/ß-catenin signaling pathway. The RUSH assay revealed the delay in endoplasmic reticulum (ER) exit and impairment of Golgi transport. Conclusions: Mutations at the Norrin dimer interface may lead to abnormal protein assembly, inability to bind to FZD4, and decreased secretion, thus contributing to compromised Norrin/ß-catenin signaling. Our results shed light on the pathogenic mechanisms behind a significant proportion of NDP gene mutations in familial exudative vitreoretinopathy (FEVR) or Norrie disease.


Assuntos
Proteínas do Olho , Receptores Frizzled , Doenças Retinianas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Receptores Frizzled/genética , Células HeLa , Mutação , Doenças Retinianas/genética , Proteínas do Tecido Nervoso/genética
3.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436209

RESUMO

Activation of the Wnt signalling pathway is vital in the anterior-posterior patterning during neural development. In a new study, Stephane Angers and colleagues leverage previously developed selective antibodies against Frizzled receptors of the Wnt pathway to stimulate midbrain progenitor differentiation in human pluripotent stem cells. We caught up with first author Andy Yang and corresponding author Stephane Angers, Professor at the University of Toronto, to learn more about the story behind the paper.


Assuntos
Ira , Anticorpos , Humanos , Diferenciação Celular , Receptores Frizzled , Mesencéfalo
4.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358799

RESUMO

The Wnt/ß-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of ß-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/ß-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.


Assuntos
Receptores Frizzled , Quinase 3 da Glicogênio Sintase , beta Catenina , Humanos , beta Catenina/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Mesencéfalo , Sistema Nervoso/metabolismo , Via de Sinalização Wnt , Animais , Ratos
5.
J Biochem Mol Toxicol ; 38(2): e23654, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348712

RESUMO

The occurrence of pelvic organ prolapse (POP) seriously affects women's quality of life. However, the pathogenesis of POP remains unclear. We aimed to clarify the role of Frizzled class receptor 3 (FZD3) in POP. FZD3 expression in the vaginal wall tissues was detected using immunohistochemistry, real-time polymerase chain reaction, and western blot analysis. Then, vaginal wall fibroblasts (VWFs) were isolated from patients with POP and non-POP, and were identified. Cell viability and apoptosis were evaluated using Cell Counting Kit-8 and flow cytometry, respectively. Extracellular matrix (ECM) degradation was assessed by western blot analysis. The results illustrated that FZD3 was downregulated in POP. VWFs from POP had lower cell viability, ECM degradation, and higher apoptosis. Knockdown of FZD3 inhibited cell viability, ECM degradation, and promoted apoptosis of VWFs, whereas overexpression of FZD3 had opposite results. Moreover, IWP-4 (Wingless-type [Wnt] pathway inhibitor) reversed the role of FZD3 overexpression on biological behaviors. Taken together, FZD3 facilitates VWFs viability, ECM degradation, and inhibits apoptosis via the Wnt pathway in POP. The findings provide a potential target for the treatment of POP.


Assuntos
Prolapso de Órgão Pélvico , Via de Sinalização Wnt , Humanos , Feminino , Qualidade de Vida , Matriz Extracelular/metabolismo , Prolapso de Órgão Pélvico/metabolismo , Prolapso de Órgão Pélvico/patologia , Fibroblastos/metabolismo , Apoptose , Receptores Frizzled/metabolismo
6.
FASEB J ; 38(4): e23493, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38363575

RESUMO

Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease that could cause blindness. It has been established that Norrin forms dimers to activate ß-catenin signaling, yet the core interface for Norrin dimerization and the precise mechanism by which Norrin dimerization contributes to the pathogenesis of FEVR remain elusive. Here, we report an NDP variant, c.265T>C (p.Phe89Leu), that interrupted ß-catenin signaling by disrupting Norrin dimerization. Structural and functional analysis revealed that the Phe-89 of one Norrin monomer interacts with Pro-98, Ser-101, Arg-121, and Ile-123 of another, forming two core symmetrical dimerization interfaces that are pivotal for the formation of a "hand-by-arm" dimer. Intriguingly, we proved that one of the two core symmetrical interfaces is sufficient for dimerization and activation of ß-catenin signaling, with a substantial contribution from the Phe-89/Pro-98 interaction. Further functional analysis revealed that the disruption of both dimeric interfaces eliminates potential binding sites for LRP5, which could be partially restored by over-expression of TSPAN12. In conclusion, our findings unveil a core dimerization interface that regulates Norrin/LRP5 interaction, highlighting the essential role of Norrin dimerization on ß-catenin signaling and providing potential therapeutic avenues for the treatment of FEVR.


Assuntos
Oftalmopatias Hereditárias , Doenças Retinianas , Humanos , Vitreorretinopatias Exsudativas Familiares/genética , beta Catenina/genética , beta Catenina/metabolismo , Dimerização , Oftalmopatias Hereditárias/genética , Transdução de Sinais , Doenças Retinianas/metabolismo , Mutação , Tetraspaninas/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Receptores Frizzled/genética , Análise Mutacional de DNA
7.
Invest Ophthalmol Vis Sci ; 65(2): 9, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315492

RESUMO

Purpose: This observational study aimed to identify mutations in monogenic syndromic high myopia (msHM) using data from reported samples (n = 9370) of the Myopia Associated Genetics and Intervention Consortium (MAGIC) project. Methods: The targeted panel containing 298 msHM-related genes was constructed and screening of clinically actionable variants was performed based on whole exome sequencing. Capillary sequencing was used to verify the identified gene mutations in the probands and perform segregation analysis with their relatives. Results: A total of 381 candidate variants in 84 genes and 85 eye diseases were found to contribute to msHM in 3.6% (335/9370) of patients with HM. Among them, the 22 genes with the most variations accounted for 62.7% of the diagnostic cases. In the genotype-phenotype association analysis, 60% (201/335) of suspected msHM cases were recalled and 25 patients (12.4%) received a definitive genetic diagnosis. Pathogenic variants were distributed in 18 msHM-related diseases, mainly involving retinal dystrophy genes (e.g. TRPM1, CACNA1F, and FZD4), connective tissue disease genes (e.g. FBN1 and COL2A1), corneal or lens development genes (HSF4, GJA8, and MIP), and other genes (TEK). The msHM gene mutation types were allocated to four categories: nonsense mutations (36%), missense mutations (36%), frameshift mutations (20%), and splice site mutations (8%). Conclusions: This study highlights the importance of thorough molecular subtyping of msHM to provide appropriate genetic counselling and multispecialty care for children and adolescents with HM.


Assuntos
Miopia , Distrofias Retinianas , Canais de Cátion TRPM , Criança , Adolescente , Humanos , Sequenciamento do Exoma , Mutação , Miopia/diagnóstico , Miopia/genética , Mutação da Fase de Leitura , Distrofias Retinianas/genética , Linhagem , Receptores Frizzled/genética , Canais de Cátion TRPM/genética
8.
Int J Oral Sci ; 16(1): 7, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246919

RESUMO

Wnt signaling are critical pathway involved in organ development, tumorigenesis, and cancer progression. WNT7A, a member of the Wnt family, remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma (HNSCC). According to the Cancer Genome Atlas (TCGA), transcriptome sequencing data of HNSCC, the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues, which was validated using Real-time RT-PCR and immunohistochemistry. Unexpectedly, overexpression of WNT7A did not activate the canonical Wnt-ß-catenin pathway in HNSCC. Instead, our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway, leading to enhanced cell proliferation, self-renewal, and resistance to apoptosis. Furthermore, in a patient-derived xenograft (PDX) tumor model, high expression of WNT7A and phosphorylated STAT3 was observed, which positively correlated with tumor progression. These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.


Assuntos
Carcinogênese , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinogênese/genética , Transformação Celular Neoplásica , Via de Sinalização Wnt , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/genética , Proteínas Wnt , Receptores Frizzled/genética , Janus Quinase 1 , Fator de Transcrição STAT3
9.
J Transl Med ; 22(1): 75, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243264

RESUMO

BACKGROUNDS: Unilateral high myopia (uHM), commonly observed in patients with retinal diseases or only with high myopia, is frequently associated with amblyopia with poor prognosis. This study aims to reveal the clinical and genetic spectrum of uHM in a large Chinese cohort. METHODS: A total of 75 probands with simplex uHM were included in our Pediatric and Genetic Eye Clinic. Patients with significant posterior anomalies other than myopic fundus changes were excluded. Variants were detected by exome sequencing and then analyzed through multiple-step bioinformatic and co-segregation analysis and finally confirmed by Sanger sequencing. Genetic findings were correlated with associated clinical data for analysis. RESULTS: Among the 75 probands with a mean age of 6.21 ± 4.70 years at the presentation, myopic fundus of C1 and C2 was observed in 73 (97.3%) probands. Surprisingly, specific peripheral changes were identified in 63 eyes involving 36 (48.0%) probands after extensive examination, including peripheral retinal avascular zone (74.6%, 47/63 eyes), neovascularization (54.0%), fluorescein leakage (31.7%), peripheral pigmentary changes (31.7%), and others. Exome sequencing identified 21 potential pathogenic variants of 13 genes in 20 of 75 (26.7%) probands, including genes for Stickler syndrome (COL11A1 and COL2A1; 6/20), FEVR (FZD4, LRP5, and TSPAN12; 5/20), and others (FBN1, GPR179, ZEB2, PAX6, GPR143, OPN1LW, FRMD7, and CACNA1F; 9/20). For the peripheral retinal changes in the 20 probands, variants in Stickler syndrome-related genes were predominantly associated with retinal pigmentary changes, lattice degeneration, and retinal avascular region, while variants in genes related to FEVR were mainly associated with the avascular zone, neovascularization, and fluorescein leakage. CONCLUSIONS: Genetic defects were identified in about one-fourth of simplex uHM patients in which significant consequences may be hidden under a classic myopic fundus in up to half. To our knowledge, this is the first systematic genetic study on simplex uHM to date. In addition to routine care of strabismus and amblyopia, careful examination of the peripheral retina and genetic screening is warranted for patients with uHM in order to identify signs of risk for retinal detachment and other complications and provide meaningful genetic counseling.


Assuntos
Ambliopia , Artrite , Doenças do Tecido Conjuntivo , Perda Auditiva Neurossensorial , Miopia , Descolamento Retiniano , Humanos , Criança , Lactente , Pré-Escolar , Ambliopia/complicações , Mutação , Linhagem , Miopia/genética , Fluoresceínas , Fatores de Risco , Análise Mutacional de DNA , Receptores Frizzled/genética , Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Tetraspaninas/genética
10.
J Gene Med ; 26(1): e3636, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009760

RESUMO

BACKGROUND: Abnormal N6-methyladenosine (m6A) modification has become a driving factor in tumour development and progression. The linc00659 is abnormally highly expressed in digestive tract tumours and promotes cancer progression, but there is little research on the mechanism of linc00659 and m6A. METHODS: The expression of linc00659 in colorectal cancer (CRC) tissues and cells was assessed by a quantitative real-time PCR. The proliferative capacity of CRC cells was determined by colony formation, Cell Counting Kit-8 and 5-ethynyl-2 deoxyuridine assays, and the migratory capacity of CRC was determined by wound healing and transwell assays and tube formation. In vivo, a xenograft tumour model was used to detect the effect of linc00659 on tumour growth. The Wnt/ß-catenin signalling pathway and related protein expression levels were measured by western blotting. The binding of linc00659 to insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was assessed by RNA pull-down and an immunoprecipitation assay. The effect of IGF2BP1 on FZD6 was detected by an RNA stability assay. RESULTS: The expression of linc00659 was abnormally elevated in CRC tissues and cells compared to normal colonic tissues and cells. We confirm that linc00659 promotes the growth of CRC cells both in vivo and in vitro. Mechanistically, linc00659 binds to IGF2BP1 and specifically enhances its activity to stabilize the target gene FZD6. Therefore, linc00659 and IGF2BP1 activate the Wnt/ß-catenin signalling pathway, promoting cell proliferation in CRC. CONCLUSIONS: Our results show that linc00659 and IGF2BP1 cooperate to promote the stability of the target FZD6 mRNA, thereby facilitating CRC progression, which may represent a potential diagnostic, prognostic and therapeutic target for CRC.


Assuntos
Adenina , Neoplasias Colorretais , RNA Longo não Codificante , Via de Sinalização Wnt , Animais , Humanos , Adenina/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro
11.
J Nutr Biochem ; 124: 109489, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926400

RESUMO

Epidemiological studies suggest an association between folate deficiency (FD) and cervical squamous cell carcinoma (SCC) progression. However, the underlying mechanism is unclear. Our study showed that FD-driven downregulation of miR-375 promoted proliferation of SCC SiHa cells and progression of xenograft tumors developed from SiHa; however, the exact mechanism of this process remained unclear. The current study aimed to elucidate the underlying mechanisms by which FD promotes the progression of SiHa cells by downregulating miR-375 expression. The results showed that miR-375 acted as a suppressor of SCC and inhibited the proliferation, migration, and invasion of SiHa cells. The FZD4 gene was identified as a target gene of miR-375, which can reverse the anti-onco effect of miR-375 and promote the proliferation and migration of SiHa cells. Furthermore, the regulatory effects of miR-375 and FZD4 on SiHa cells may be achieved by activating the ß-catenin signaling pathway. Moreover, FD may regulate the expression of miR-375 by regulating its DNA methylation level in the promoter region. In conclusion, our study reveals that FD regulates the miR-375/FZD4 axis by increasing the methylation of the miR-375 promoter, thereby activating ß-catenin signaling to promote SiHa cells progression. This study may provide new insights into the role of folic acid in the prevention and treatment of SCC.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo do Útero/genética , Via de Sinalização Wnt , Ácido Fólico/farmacologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Receptores Frizzled/genética
12.
Dev Cell ; 59(2): 244-261.e6, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38154460

RESUMO

WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.


Assuntos
Glipicanas , Proteínas Wnt , Proteínas Wnt/metabolismo , Glipicanas/metabolismo , Via de Sinalização Wnt , Desenvolvimento Embrionário , Lipídeos , Receptores Frizzled/química , Receptores Frizzled/metabolismo
13.
Exp Eye Res ; 239: 109769, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154732

RESUMO

Genetic and environmental factors can independently or coordinatively drive ocular axis growth. Mutations in FRIZZLED5 (FZD5) have been associated with microphthalmia, coloboma, and, more recently, high myopia. The molecular mechanism of how Fzd5 participates in ocular growth remains unknown. In this study, we compiled a list of human genes associated with ocular growth abnormalities based on public databases and a literature search. We identified a set of ocular growth-related genes from the list that was altered in the Fzd5 mutant mice by RNAseq analysis at different time points. The Fzd5 regulation of this set of genes appeared to be impacted by age and light damage. Further bioinformatical analysis indicated that these genes are extracellular matrix (ECM)-related; and meanwhile an altered Wnt signaling was detected. Altogether, the data suggest that Fzd5 may regulate ocular growth through regulating ECM remodeling, hinting at a genetic-environmental interaction in gene regulation of ocular axis control.


Assuntos
Receptores Frizzled , Microftalmia , Animais , Humanos , Camundongos , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica , Via de Sinalização Wnt
14.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060684

RESUMO

During the secretory phase of the menstrual cycle, elongated fibroblast-like mesenchymal cells in the uterine endometrium begin to transdifferentiate into polygonal epithelioid-like (decidual) cells. This decidualization process continues more broadly during early pregnancy, and the resulting decidual tissue supports successful embryo implantation and placental development. This study was carried out to determine if atonal basic helix-loop-helix transcription factor 8 (ATOH8) plays a role in human endometrial stromal fibroblast (ESF) decidualization. ATOH8 messenger RNA and protein expression levels significantly increased in human ESF cells undergoing in vitro decidualization, with the protein primarily localized to the nucleus. When ATOH8 expression was silenced, the ability of the cells to undergo decidualization was significantly diminished. Overexpression of ATOH8 enhanced the expression of many decidualization markers. Silencing the expression of ATOH8 reduced the expression of FZD4, FOXO1, and several known FOXO1-downstream targets during human ESF cell decidualization. Therefore, ATOH8 may be a major upstream regulator of the WNT/FZD-FOXO1 pathway, previously shown to be critical for human endometrial decidualization. Finally, we explored possible regulators of ATOH8 expression during human ESF decidualization. BMP2 significantly enhanced ATOH8 expression when cells were stimulated to undergo decidualization, while an ALK2/3 inhibitor reduced ATOH8 expression. Finally, although the steroids progesterone plus estradiol did not affect ATOH8 expression, the addition of cyclic adenosine monophosphate (cAMP) analogue alone represented the major effect of ATOH8 expression when cells were stimulated to undergo decidualization. Our results suggest that ATOH8 plays a crucial role in human ESF decidualization and that BMP2 plus cAMP are major regulators of ATOH8 expression.


Assuntos
Endométrio , Placenta , Feminino , Humanos , Gravidez , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Decídua/metabolismo , Endométrio/metabolismo , Receptores Frizzled/metabolismo , Células Estromais/metabolismo , Útero
15.
Cells ; 12(21)2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37947657

RESUMO

Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases.


Assuntos
Doenças Retinianas , Doenças Vasculares , Humanos , Criança , Vitreorretinopatias Exsudativas Familiares/metabolismo , Células Endoteliais/metabolismo , Tetraspaninas/metabolismo , Doenças Retinianas/metabolismo , Doenças Vasculares/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
16.
Curr Biol ; 33(24): 5340-5354.e6, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37995695

RESUMO

The core planar polarity pathway consists of six proteins that form asymmetric intercellular complexes that segregate to opposite cell ends in developing tissues and specify polarized cell structures or behaviors. Within these complexes, the atypical cadherin Flamingo localizes on both sides of intercellular junctions, where it interacts homophilically in trans via its cadherin repeats, whereas the transmembrane proteins Frizzled and Strabismus localize to the opposite sides of apposing junctions. However, the molecular mechanisms underlying the formation of such asymmetric complexes are poorly understood. Using a novel tissue culture system, we determine the minimum requirements for asymmetric complex assembly in the absence of confounding feedback mechanisms. We show that complexes are intrinsically asymmetric and that an interaction of Frizzled and Flamingo in one cell with Flamingo in the neighboring cell is the key symmetry-breaking step. In contrast, Strabismus is unable to promote homophilic Flamingo trans binding and is only recruited into complexes once Frizzled has entered on the opposite side. This interaction with Strabismus requires intact intracellular loops of the seven-pass transmembrane domain of Flamingo. Once recruited, Strabismus stabilizes the intercellular complexes together with the three cytoplasmic core proteins. We propose a model whereby Flamingo exists in a closed conformation and binding of Frizzled in one cell results in a conformational change that allows its cadherin repeats to interact with a Flamingo molecule in the neighboring cell. Flamingo in the adjacent cell then undergoes a further change in the seven-pass transmembrane region that promotes the recruitment of Strabismus.


Assuntos
Proteínas de Drosophila , Estrabismo , Humanos , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Proteínas de Membrana/metabolismo , Caderinas/genética , Caderinas/metabolismo , Polaridade Celular
17.
Cell Rep ; 42(11): 113354, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917586

RESUMO

The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/ß-catenin signaling and engineer endogenous WNT/ß-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/ß-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.


Assuntos
Tubas Uterinas , beta Catenina , Feminino , Humanos , beta Catenina/metabolismo , Tubas Uterinas/metabolismo , Transcriptoma/genética , Células-Tronco/metabolismo , Via de Sinalização Wnt , Organoides/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Receptores Frizzled/metabolismo
18.
Medicine (Baltimore) ; 102(40): e35406, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37800830

RESUMO

BACKGROUND: Endometriosis is a chronic inflammatory, benign disorder that often co-occurs with adenomyosis and/or leiomyoma. The overall incidence of endometriosis in reproductive period women was nearly 10%. However, the exact mechanisms of endometriosis-associated pathogenesis are still unknown. METHODS: In this study, we aimed to investigate whether Frizzled-7 (FZD7) would effectively promote the development of endometriosis. The microarray-based data analysis was performed to screen endometriosis-related differentially expressed genes. This process uncovered specific hub genes, and the nexus of vital genes and ferroptosis-related genes were pinpointed. Then, we collected human endometrial and endometriotic tissues from patients with endometriosis of the ovary (n = 39) and control patients without endometriosis (n = 10, who underwent hysterectomy for uterine fibroids) to compare the expression of FZD7. RESULTS: These findings indicated that the expression of FZD7 was high compared with normal endometrium, and FZD7 may promote the progression of endometriosis. CONCLUSION: FZD7 may serve as a potential therapeutic target for endometriosis treatment.


Assuntos
Endometriose , Feminino , Humanos , Biomarcadores/metabolismo , Endometriose/genética , Endometriose/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Leiomioma/patologia , Ovário/patologia
19.
J Biol Chem ; 299(11): 105350, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832874

RESUMO

Wnt signaling plays a key role in the mature CNS by regulating trafficking of NMDA-type glutamate receptors and intrinsic properties of neurons. The Wnt receptor ROR2 has been identified as a necessary component of the neuronal Wnt5a/Ca2+ signaling pathway that regulates synaptic and neuronal function. Since ROR2 is considered a pseudokinase, its mechanism for downstream signaling upon ligand binding has been controversial. It has been suggested that its role is to function as a coreceptor of a G-protein-coupled Wnt receptor of the Frizzled family. We show that chemically induced homodimerization of ROR2 is sufficient to recapitulate key signaling events downstream of receptor activation in neurons, including PKC and JNK kinases activation, elevation of somatic and dendritic Ca2+ levels, and increased trafficking of NMDARs to synapses. In addition, we show that homodimerization of ROR2 induces phosphorylation of the receptor on Tyr residues. Point mutations in the conserved but presumed nonfunctional ATP-binding site of the receptor prevent its phosphorylation, as well as downstream signaling. This suggests an active kinase domain. Our results indicate that ROR2 can signal independently of Frizzled receptors to regulate the trafficking of a key synaptic component. Additionally, they suggest that homodimerization can overcome structural conformations that render the tyrosine kinase inactive. A better understanding of ROR2 signaling is crucial for comprehending the regulation of synaptic and neuronal function in normal brain processes in mature animals.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Via de Sinalização Wnt , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Neurônios/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Dimerização
20.
J Med Chem ; 66(17): 11855-11868, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669317

RESUMO

Despite the essential roles of Frizzled receptors (FZDs) in mediating Wnt signaling in embryonic development and tissue homeostasis, ligands targeting FZDs are rare. A few antibodies and peptide modulators have been developed that mainly bind to the family-conserved extracellular cysteine-rich domain of FZDs, while the canonical binding sites in the transmembrane domain (TMD) are far from sufficiently addressed. Based on the recent structures of FZDs, we explored small-molecule ligand discovery by targeting TMD. From the ChemDiv library with ∼1.6 million compounds, we identified compound F7H as an antagonist of FZD7 with an IC50 at 1.25 ± 0.38 µM. Focusing on this hit, the structural dissection study, together with computing studies such as molecular docking, molecular dynamics simulation, and free energy perturbation calculations, defined the binding pocket with key residue recognition. Our results revealed the structural basis of ligand recognition and demonstrated the feasibility of structure-guided ligand discovery for FZD7-TMD.


Assuntos
Anticorpos , Receptores Frizzled , Feminino , Gravidez , Humanos , Ligantes , Simulação de Acoplamento Molecular , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...